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Traveling wave solutions of nonlinear partial
differential equations
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Abstract. Elementary transformations are utilized to obtain traveling wave solutions of some diffusion and wave
equations, including long wave equations and wave equations the nonlinearity of which consists of a linear
combination of periodic functions, either trigonometric or elliptic. In particular, a theorem is established relating the
solutions of a single cosine equation and a double sine-cosine equation. It is shown that the latter admits a
Backlund Transformation.

1. Introduction

This paper is concerned with finding traveling wave (TW)-solutions of some nonlinear partial
differential equations, primarily in terms of the integral of a to be determined function set
equal to a linear combination of the independent variables. This procedure reduces the
problem to finding the solution of an ordinary differential equation of order one less than the
order of the partial differential equation and, while this of course means the potential loss of
some solutions, the solutions obtained often yield direct information about the structure of a
solution so that more general solutions may be obtained by extrapolation. The method has
been found to be quite useful in finding solutions of the Klein-Gordon (KG)-equation [1],
including the special case which has become known as the Sine-Gordon (SG)-equation [2],

[3].
The first equation to be considered is a nonlinear diffusion equation for which the method

reduces the problem to the solution of an Abel differential equation. Although for this
problem, the method is useful primarily in an inverse manner, i.e., choose a function and see
for what equation it provides a TW-solution, exact functional forms are determined for some
physically important problems. Further, an approximate method is derived for some
polynomial approximations of the nonlinear term.

A brief discussion of nonlinear wave equations, including the KG-equation, is given before
considering variations of the SG-equation to allow for the addition of forcing and damping
terms. For a constant forcing term, a solution is obtained by quadrature, using an alternative
direct method. This solution generalizes a previously obtained solution of the SG-equation.
When damping is added to the equation, an approximate solution is obtained for a
polynomial approximation (nth partial sum of the Taylor series) of the sine function.

The fifth section is concerned with long wave equations. The Korteweg-de Vries (KdV)-
equation and its various generalizations have been shown to model a surprising diversity of
finite-amplitude dispersive wave propagation in many physically important contexts [4].
TW-solutions of some generalized KdV-equations are obtained. Since many of these
equations admit Backlund transformations (BT), additional solutions may be obtained from
known solutions [5].
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The sixth section is concerned with nonlinear wave equations the inhomogeneous term of
which consists of a linear combination of periodic terms with special arguments. The usual
trigonometric functions, except for the cosine, are discussed.

The seventh section is concerned with the cosine equations. The solution for an n-tuple
cosine equation would provide an approximate solution for a nonlinear wave equation the
inhomogeneous term of which may be approximated by a partial sum of a Fourier cosine
series, a result entirely analogous to the previously obtained result for a Fourier sine series
approximation [2]. Further, it is shown that each TW-solution of the single cosine equation
immediately leads to a TW-solution of a double sine-cosine equation, a special case of which
is a double cosine equation. It is shown that the double equation admits a BT.

The final section is concerned with inhomogeneous terms which are Jacobian elliptic
functions. The solutions obtained contain the solutions for the SG-equation, the cosine
equation and the tangent equation as special limiting cases.

2. Nonlinear diffusion

The first application of the method will be to nonlinear diffusion problems. The most simple
nonlinear diffusion equation is

u, = Ux + H(u) (1)

where x is a spatial variable, t the time, H a given nonlinear function and partial derivatives
are denoted by subscripts. The procedure is to look for a solution in the form

f F-'(u) du = rx + st (2)

where r and s are constants with r assumed always positive, so the direction of the wave is
determined by the sign of s. Inclusion of r is a convenient way to allow for scaling of the
variables. Substitution of equation (2) into equation (1) leads to the ordinary differential
equation

r2FF' - sF' + H(u) = 0 (3)

where the prime denotes differentiation with respect to the argument. Equation (3) is
classified more easily when written in terms of F = 1IF, i.e.,

r2 F' + sF 2- HF3 = 0. (4)

Thus, the procedure reduces the problem of finding a TW-solution of the nonlinear diffusion
problem governed by equation (1) to the solution of an Abel differential equation, an
equation for which not very many closed-form solutions are known. Consequently, equation
(3) is applied most easily in an inverse manner, i.e., particular choices of F will yield
TW-solutions of equation (1) with H determined from equation (3).

The extension to more difficult diffusion equations, e.g.,

U, = ux + M(u)u 2 + H(u) (5)
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with an additional function M leads to a more difficult Abel equation; however, used
inversely, a hierarchy of solutions may be determined by choosing F and also either M or H.
Clearly, the method is applicable to any diffusion equation with coefficients and extra
function which depend only on u. Also, the extension to equations dependent on additional
spatial variables causes no further difficulties. In order to dispel the notion that the method
merely reduces to an iterative guessing game, some exact results and an approximate
method, which will prove quite useful in the sequel, will be discussed.

Many diffusion problems are governed by the equation

u, = [K(u)ux]x . (6)

An exact solution may be obtained for the appropriate ordinary differential equation so that
a TW-solution is given by

f [K(u) (au + b)] du = slar2 (7)

where a and b are arbitrary constants.
The equation

x, - aO2 = exp[(a - y)0]0, (8)

with constant a and y may be transformed into the form of equation (6) by introduction of
the transformation u = exp(- yO); namely,

U, = [U-+'Yuxlx , (9)

so that a TW-solution is given by equation (7) with

K(u) = u- l+ l/

The equation

w(u)u, = [K(u)uxLx (10)

admits a TW-solution with

F(u) = [sf w(u) du]/r 2K(u), (11)

which is consistent with equation (7).
The equation

u, = [D(u)ux - K(u)]x (12)

admits a TW-solution

a f {D(u)l[a(sur + K)r + b]} du . (13)
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Physical problems for which these equations are appropriate are discussed in reference [6].
A particularly useful choice for F is a polynomial in u. If F is chosen to be a polynomial of

order n, then H will be a polynomial of order 2n - 1. If H(u) may be approximated by a
polynomial of odd order, then a corresponding approximate solution may be obtained; an
interesting example will be given in Section 4.

More difficult equations, e.g.,

a, = uxx + exp(-bl u) (14)

where b1 is constant, also may be treated approximately. Thus, using an approximation for F
in terms of reciprocal powers of u, gives

f[du/ (aiu') =; (15)

where the ai's may be determined recursively when the exponential term in equation (14) is
approximated by an appropriate partial sum of its series expansion in reciprocal powers of u.

3. Nonlinear wave equations

TW-solutions of various nonlinear wave equations may be obtained in an analogous fashion.
The usual KG-equation may be written as

n, = v'(q) (16)

in terms of two (characteristic) variables. As shown previously [1], introduction of the
transformation

dw = v- /2 dO , (17)

i.e., F(4) = v"12 (4), immediately leads to a TW-solution

w = A + 2l/A

where A is constant. For example, with a potential function

V() = (2 + a2 )(1 _ k2 )v18(1 + a2 )

where a and v are constants, a TW-solution is given by

2(a 2 + 1)1/24(,2 + a2 )1 /2 /a2(1 _ p2) = sinh[v(Ae + 2,r/A)/2 1/2] . (18)

From this structural form, additional solutions may be obtained.
A similar equation is the Dodd-Bullough equation [7]

qn = e2, _ e-
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for which a solution is given by

f Z-1/2(Z + 21
/3)-1/

2
[(z - 2-213)2 + 3/24/3]-1/2 dz = Af + 27/lA

where z = exp . The integral may be expressed in terms of elliptic functions.
The equation

Uyy- [ 2(u)ux]L = o

admits a TW-solution

f [A 2q - B2] du = Ax + By.

Additional examples of the present technique may be found in previous papers [3], [8].

4. The modified Sine-Gordon equation

The particular case of the KG-equation which has become known as the SG-equation has
been utilized as the model equation for many important physical phenomena. While the
SG-equation has been studied using the present procedure, [1], it has been shown that an
alternate approach, based on a special transformation, leads to more detailed results [2].
Thus, both approaches will be utilized.

In some cases, the SG-equation occurs with additional terms due to forcing and damping.
With a constant forcing term E, the equation may be written as

Ady = sin a + E . (19)

Introduction of the transformation

Cr = 2 arctan N(Af + B-q) (20)

where N is a twice-continuously differentiable function and A and B are constants leads to
the ordinary differential equation

L[N] = N"IN - 2N'2 /(1 + N 2 ) = E(1 + N 2 )I2ABN + 1 IAB, (21)

which may be integrated once to give

N'21(1 + N 2 ) = C - 1 AB + CN 2 - [E(1 + N 2 ) IAB] arctan N

where C is an arbitrary constant. When E vanishes, this first-integral reduces to a solution
obtained previously for the SG-equation [2].

The damped and forced SG-equation to be considered may be written as

o,., = sin o + E + Do( (22)
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where D is constant. Since the use of the transformation given by equation (2) leads to an
(Abel) equation for which a first integral has not been obtained, an approximate solution
may be obtained through the use of the results of Section 2. Thus, looking for a solution of
equation (22) in the form

f F-l(cr) do, = A~ + Br, (23)

leads to

ABFF' - ADF = E + sin a . (24)

Replacing the sin oa term by a partial sum of its series expansion (a polynomial of odd order)
allows a solution in the form of a polynomial. As a specific example, chosen for algebraic
simplicity, if the first two terms of the sine series are retained, the choice

F(o) = a0 + alo- + a2o(2

provides an approximate solution. Since it follows immediately that AB <0, the choice
AB = -1 will be made. The coefficients are easily determined as

a0 = 31/2(-1+ 2A 2D 2/9), a, = -ADI3, a2 = 1/12,

and the wave speed a is determined from

2(-1 + 2A 2D2/9)AD3/2/13 + E = 0.

Higher-order approximations may be obtained in a similar fashion.
The SG-equation

xx - att = sin o- (25)

admits a similarity solution in terms of the variable z = xt. This solution has been utilized to
discuss the propagation of ultrashort light pulses in an amplifier [10], [11]. With a(x, t)=
o-(z), this leads to

zo; + o- - sin o-r = 0. (26)

Introduction of a new dependent variable transforms equation (26) to a special case of the
equation that defines the third Painlev6 trancendent [12]; however, direct numerical treat-
ment of equation (26) is the expedient choice. Alternatively, introduction of the variable
change z = log z, oj(Z) = o-2 (zl) removes the first-order derivative term and gives the
differential equation

a. = exp(zl) sin 2 . (27)

More generally, consider the equation for t/(zj),
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i" = Qf(zl) sin i . (28)

Introduction of the transformation 4i = 2 arctan N1 (zl) leads to the ordinary differential
equation

L[N1] = l(z,) (29)

A first integral of equation (29) may be written as

(N)2 = (1 + N2)2[A - f f d( + N)] (30)

where A is an arbitrary constant. Equation (27), of course, corresponds to fl = exp(zl).

5. Long wave equations

The model equations of Korteweg and de Vries (KdV) and Boussinesq originated as

approximate governing equations for long water waves of small amplitude; however, these
equations have been found to be applicable to physically interesting problems in other
contexts. Since the present method is too simple to produce any new results for these
extensively studied equations, the primary focus of this section is directed toward generaliza-
tions, although it is shown that special cases of the classical results may be obtained.

The starting point is the generalized KdV equation

Ut + Anuxu = BUx x . (31)

Looking for a solution in the form of equation (2) leads to the ordinary differential equation

G" = slBr3 + Aun/Br2 (32)

where G = F2 /2. The solution is

F2 = a + bu + su 2/Br3 + 2Aun+2/(n + 1)(n + 2)Br2 (33)

where a and b are arbitrary constants. The KdV-equation corresponds to n = 1, and the
solutions may be expressed in terms of elliptic function. Comparable results are obtained for
the modified KdV (mKdV)-equation which corresponds to n = 2. Larger values of n yield
particular solutions for the appropriate equations.

An alternative equation for long wave approximations is the Benjamin-Bona-Mahony
equation

ut + ux + Auux = BUxx, (34)

in which arbitrary constant coefficients have been introduced. For this equation, the value
for F is obtained as

F2 = a + bu + (r + s)u2 lBr2s + Au 313Brs (35)
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which differs from the solution given by equation (33) (with n = 1) for the KdV-equation
only in the coefficients of the last two terms.

A combination of the KdV- and mKdV-equations [13],

ut + Auu + Bu 2 u + CUxxx = 0,

leads to the solution

G = a + bu - su 2 /2r3C - Au3 /6r2 C - Bu4/12r2 C.

An equation which occurs in nonlinear dispersive systems with dissipation is the KdV-
Burgers equation. Since a combined mKdV-Burgers equation has been found to be of
interest [13], a generalized mKdV-Burgers equation will be considered; specifically,

u, + B2 Unux - Au,, = Cuxx . (36)

Looking for a solution in the form of equation (2) leads to the differential equation

FF' + AFICr = su/Cr3 + B2 un+l/C(n + 1)r2 + D (37)

where D is constant. From the analysis of Section 2, a polynomial solution for F may be
obtained for even n. In particularly, for n = 2,

2

F= (au')
i=0

with a = 3CDr/2A, a = -A/3Cr, a2 = B/r(6C)1/2 , with s determined from

s = Cr3(2aoa2 + a + Aal/Cr) .

Some comments about the KdV-Burgers equation (equation (37) with n = 1) are appro-
priate. It is of interest to compare this equation with Fisher's equation [9] from population
dynamics, i.e.,

ut = Dux + Alu + B 1u
2 (38)

with specified coefficients Al, B and D1. A TW-solution of equation (38) leads to the
differential equation

FF' + sFID r2 = -Alu/D1
r2 - Bu2Dr2 . (39)

Equation (39) is equal to the corresponding equation for the KdV-Burgers equation if the
integration constant D is chosen to be zero. Since extensive numerical studies of the latter
have been carried out [14], these results should be applicable to Fisher's equation.

The Boussinesq equation

Utt - Ux - (3u 2 )xx - Uxxx = 0 (40)
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yields a polynomial solution

3

G= Z (au')
i=0

where a and al are arbitrary, a2 = -(r 2 - s2 )/2r 4 a3 = -r- 2

There has been some interest in generalization of the KdV-equation with higher-order
x-derivatives [15], [16] [17], e.g., the equation

u, + AUm ux + Bu5 x = 0 (41)

where the notation indicates five derivatives with respect to x. The appropriate correspond-
ing equation for G is

G* -2GG"- G' 2 = -Aum+2 r4 B(m + 1)(m + 2) - su212Br5 + au + b . (42)

There is a polynomial solution for m = 2; namely

G = a + alu + a3u3 (43)

with a = a/12a3 , a = s(-10BIA)2/16Br3 , a3 = -A/90Br 4 , which satisfies equation (42)
with b = - a2/2. Assuming A > 0, this solution requires B < 0 in order to be real.

The fifth-order equation [17]

ut + AU2 UX + BUUxxx + Cuxuxx + DU5x = 0 (44)

yields a solution

G = a + alu + a3 u3

where a3 is determined from

90a 2 + 3(C + 2B/r)a3/Dr 2 + AlDr4 = 0,

a, = -(slDr5)1(18a 3 + ClDr2 ),

and a is arbitrary.
The appropriate equation for G for the seventh-order equation

Ut + Aunux + Bu7x = 0 (45)

is

r7B{G'G*" + 2GG*"}' + Arun + s = 0

which may be integrated once directly. If the constant of integration is chosen to be zero,
there is a simple solution for G; namely,
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G = -s/(r 7 B360a2) + a3 u3

where a =-A/(2520Br6 ).
An equation which includes the KdV- and SG-equations as limiting cases is [17]

u s + AUfue + Bufe - sin u = 0. (46)

The corresponding equation for G is

G*' + sG'lBr3 + A(G2 )'IB = (or sin u)lBr4

Integrating once, approximating cos u by the first three terms of its series expansion and
looking for a polynomial solution, gives

G = a - a 2u2

a2 = -al(Ar4 4!), ao = (ao2Br4 - 2a 2 - sa2/Br 3 )B/2Aa2,

and the constant of integration is related to s by

C = 4aoa2 + saolBr3 + AaO/B + a/Br4

Assuming a > 0, the solution will be real if A < 0.
It is possible to treat analogous equations with additional independent variables in an

entirely similar way. Looking for a solution of [18]

Ux, + (3U2)xx + uxxx + Duyy = 0 (47)

in the form

f [duIF(u)] = Ax + By + Ct,

leads to a solution

G = a + alu - (AC + DB2 )u 2 /2 - u3/A2

where a and a are arbitrary.

6. Wave equations with N-tuple periodic terms

The equations to be considered are of the form

U = E [AiTi(u)] (48)
i=1

where the Ti's are periodic functions with special arguments of a, either the trigonometric
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functions or elliptic functions. With specified coefficients A i and Ti = sin(u/i), equation (48)
is an n-tuple SG-equation of particular interest in nonlinear optics, providing the equations
which govern the propagation of ultrashort light pulses when the effects of level degeneracy
must be included (Q-transition). The solution of this problem was discussed in a recent
paper [2] for the more general case of arbitrary coefficients Ai thus providing, in addition, an
approximate solution for an arbitrary KG-equation, the inhomogeneous term of which may
be approximated by a partial sum of a Fourier sine series. Solutions (by quadrature) for the
other trigonometric functions will be given in this section.

The first equation to be discussed is the KG-equation

u,, = tan u . (49)

Introduction of the transformation

u = 2 arctan N(Ae + Bq) (50)

leads to the differential equation [see equation (21)]

ABL[N] = (1 + N 2 )(1 - N 2 ) . (51)

A first integral of equation (51) is given by

2ABN' 2 = (1+ N2 )2 {ln[(1 + N 2)/(1 - N 2 )] + D) , (52)

so that the solution of equation (49) is reduced to a quadrature. D is a constant of
integration.

Proceeding to the double-tangent equation

ugf = R tan(u/2) + S tan u (53)

where R and S are constants, the transformation given by equation (49) leads to the

differential equation

2ABL[N] = (1 + N 2 )[(R + 2S - RN 2 ) /(1 - N 2)] . (54)

A first-integral of equation (54) is given by

2ABN' 2 = (1 +N 2)2 {n[1 + N2 )R+S/(1 - N 2 )s] + D)} . (55)

Equation (55) contains equation (51) as the special case obtained by letting R = 0, S = 1.
The triple-tangent equation will be taken in the form

uen = R tan(u/3) + S tan(2u/3) + T tan u (56)

where T is constant. The appropriate transformation is

u = 3 arctan N, (57)
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which leads to the differential equation

3ABL[N]I(1 + N 2) = R + 2S/(1 - N 2 ) + T(3 - N 2) (1 - 3N 2 ). (58)

A first integral of equation (58) is given by

3ABN' 2 = (1 + N2 )2 {ln[(1 + N2 )R+S+TI(1 - N 2 )S(1 - N2) 2T/3] + D). (59)

With minor changes in the definition of u, solutions of equations (49) and (53) are contained
as special limiting cases of equation (59). This property of the solutions of n-tuple equations
containing solutions of (n - 1)-tuple, (n - 2)-tuple, etc. holds for each of the trigonometric
equations. Clearly, solutions for four-tuple, five-tuple, etc., equations may be obtained in a
similar fashion.

The transformation given by equation (50) applied to the equation

use = cot u (60)

leads to the differential equation

4ABN2 L[N] = 1- N 4 ,

which has the first integral

2ABN'2 = (1 + N 2 )2 {In[N/(1 + N 2 )] + D} .

For the double-cotangent equation

uf, = R cot(u/2) + S cot u,

the same transformation leads to

4ABN 2L[N] = 2R + S - SN 2 ,

for which a first-integral is given by

2ABN'2 = (1 + N2 ) 2{ln[N 2R+sl(l + N 2)R+s] + D}) .

For the triple-cotangent equation

ue = R cot(u/3) + S cot(2u/3) + T cot u,

the transformation given by equation (37) leads to

3ABN 2 L[N]/(1 + N 2 ) = R + S(1 - N2 ) /2 + T(1 - 3N 2 )/(3 - N 2),

for which a first integral is given by
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3ABN' 2 = (1 + N 2)2 {ln[N2 R+S+ 2T/ 3 (N2 - 3 )2T/3/(l + N2 )R+S+T] + D) .

The equation

Uen = sec u

leads to the differential equation

2N(1 - N 2 )ABL[N] = (1+ N2 )2

after application of the transformation given by equation (50). A first integral is given by

ABN' 2 = (1 + N 2 )2 [artanh N + D] .

For the double-secant equation

us7 = R sec(u/2) + S sec u,

the transformation

u = 4 arctan N (61)

leads to

4ABL[N]NI(1 + N 2 ) = (1 + N2 )(1 - N 2 )-1[R + S(1 + N2 )(1 - N 2 ) (1 - 6N 2 + N 4 )].

A first integral of this equation is given by

4ABN' 21(1 + N2 )2 = 2R artanh N + S[(21/ 2 - 1)a 1/ 2 artanh(Na 1/2)

- (1 + 21/2)a 1/2 artanh(Na 1/2 )] + D .

For the triple-secant equation

u = R sec(u/3) + S sec(2u/3) + T sec u,

the appropriate transformation is

u = 6 arctan N. (62)

This gives

6ABL[N]N/(1 + N 2) = [(1 + N 2 )/(1 - N2 )][R + S(1 + N 2 )(1 - N 2)l(1 -6N 2 + N 4 )

+ T(1 + N 2 )2/(1- 14N2 + N 4 )] .

A first integral is given by
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3ABN'21(1 + N2 )2 = (R - T13) artanh N + S(21/2 1)(2a 2)
- 1 / 2 artanh(Na2 1/2)

- S(1 + 21/2)/(2a1 )- 2 artanh(Na - 1/ 2) - T[(31 /2 - 2) /3a /2 ] artanh(NA 1/2 )

+ T[(31/2 + 2)/3a/2] artanh(Na 11 2) + D,

where a = 3 + 23 /2, a2 = 3 - 2312, a3 = 7 + 4(31/2), a4 = 7 - 4(31/2).
Equation (50) applied to the equation

u 1 = csc u

leads to the differential equation

4N2 ABL[N] = (1 + N 2 )2 ,

which has the first integral

2ABN'2 = (1 + N2 ) 2{n N + D} .

Under the transformation given by equation (61), the double-cosecant equation leads to

8N2 ABL[N] = (1 + N2 )2 [R + S(1 + N 2 )/2(1 - N 2 )],

which has the first integral

8ABN' 2 = (1 + N2 )2 {ln[(N2 )R+S/2/(1 - N 2 )s] + D}.

For the triple-cosecant equation, the appropriate transformation is equation (62). The

differential equation which results is

12ABN 2L[N] /(1 + N2 )2 = R + S(1 + N 2 ) /2(1 - N 2 ) + T(1 + N 2)2 /(3 - 10N 2 + 3N 4).

A first integral is given by

12ABN'2 = (1 + N2 )2 {ln[(N2 )R+S/2+T/3(1 - N 2 )-s{(3 - N 2 )/(1 - 3 N 3 )}2 T /3] + D} .

7. Cosine equations

The transformation given by equation (50) is appropriate for the equation

un, = cos u. (63)

This leads to the differential equation

2ABL[N] = 1 - N 2 , (64)

for which a first integral is given by
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ABN' 2 = (1 + N 2 )(D + N + DN2 ). (65)

For the double-cosine equation

us, = R cos(u/2) + S cos u,

the appropriate transformation is equation (61). The resulting differential equation is

4ABL[N]N = R(1 - N2 ) + S(1 -6N 2 + N 4 )/(1 + N 2 ),

for which a first integral is given by

2ABN'2 = N[(R - S)N 2 + R + S] + D(1 + N 2 )2 .

For the triple-cosine equation

ue, = R cos(u/3) + S cos(2u/3) + T cos u,

the appropriate transformation is equation (62). The resulting differential equation is

6ABNL[N]/(1 + N 2 ) = -S + (R - 3T)(1 - N 2) /(1 + N 2 ) + 2S(1 - N 2)2/(1 + N 2 )2

+ 4T(1 - N2 )3 /(1 + N2 )3

A first integral is given by

6ABN'2 = 2(R - S + T)N(1 + N 2 ) + 4(S - 8T13)N + (32T/3)N(1 + N2)-
l

+ D(1 + N 2 )2 .

One of the interesting conclusions of the previous discussion of the n-tuple SG-equation
was the result that each TW-solution of the single SG-equation immediately led to a
corresponding TW-solution of the double SG-equation. Thus, a BT could be written for the
double SG-equation, the "vacuum solution" of which led to a convenient representation of
the single-soliton solution of the double equation [2]. An analogous theorem connecting
solutions of single-cosine equations and a double-sine-cosine equation, a special case of
which is a double-cosine equation, may be derived in an entirely similar manner.

The basic assumption is that N as given by equation (50) satisfies equation (63) and,
therefore, equation (65). The proof is simple and constructive.

The starting point is direct differentiation of

u = 4arctan{cN[A 1 + B1 1]} (66)

where Al, B and c are to be determined constants. This procedure gives

u, = 2A 1,B sin(u/2)[N"lN - 2c2N'21/(1 + c2N 2)]

= (2A ,B 1IAB) sin(u/2)[(1 - N 2 )12N + 2(1 - c 2)(D + N + DN2 )/(1 + c2N 2)1
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or

u,1 = [AIB 1(c
2 + 1)IABc]{cos(u/2) + [(C2 - 1)/(C2 + 1)] cos u

+ [D(1- C2)IC(1 + c2 )][2(1 + c2 ) sin(u/2) + (c2 - 1) sin u]} . (67)

Thus, equation (66) is a solution of equation (67). Summarizing, we have

THEOREM. If u= 2 arctan N[Ae + Br] is a solution of

Ut,7 = COS U ,

then

u = 4 arctancN[A + B1 7q])

is a solution of equation (67), a double-sine-cosine equation.

COROLLARY. If D is.chosen to be zero, then

u = 4 arctan{cN[A1 + B ]}

is a solution of the double-cosine equation

u0s = R cos(u/2) + S cos u

with SIR = (c 2 - 1)/(c 2 + 1), AB 1 = RABc(1 + c2 ).

The close relation between the cosine equation and equation (67) (or the double-cosine
equation) means that a BT may be written for the double equation. The starting point is the
BT for the usual SG-equation, i.e.,

[(u1 - u2 )/ 2 ] = a sin[(u1 + u2)/2],

[(u 1 + u2 )/2], = a-' sin[(u 1 - u2)/2].

A simple translation of the dependent variable gives the following BT for the single-cosine
equation

[(ul - u 2)/ 2 ]c = a cos[(u1 + u2 )/2],
(68)

[(ul + u2 )/2], = a-1 sin[(ul - u2)/2] (68)

which has the "vacuum solution"

u + 7r/2 = 4 arctan exp(ae + l7/a) .

There are various ways of writing a BT for the double equation, but the most practical is to
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write equation (68) in terms of

u = 2 arctan N[A6 + ±l/A].

This gives

N,/(1 + N 2) - N2,/(1 + N2) = a(1 - NlN2 )/[(1 + N2)(1 + N) 1 '/2

(69)
N1 /1(1 + N) N2 /1 (1 + N2) = a-1 (Nl - N 2)/[(1 + Ni)(1 + N2) ] ',

Equations (69) provide a BT for the double equation if N is determined from

u = 4 arctan{cN[LA(a5 + * la)]}

with constant /z. Setting N 2 = 0 in equations (69) gives

N1 = [1 + csch(a5 + 7la)] /[csch(ae + 7/a)- 1]

as the "vacuum solution" of equations (69). Thus

u = 4 arctan c{[1 + csch u(ae + l/a)]/[csch !,(a + 77/a) - 1]}

is the corresponding solution of the double equation.

8. Elliptic functions

Equations with nonlinear periodic terms, the period of which may be varied, may be
considered by using Jacobian elliptic functions. For an odd periodic nonlinear term, consider

up = sn(u, k). (70)

An appropriate transformation for this equation is

N(A5 + B-) = tn(u/2) - sn(u/2)/cn(u/2) (71)

where the modulus k will be omitted in order to simplify the notation. This procedure leads
to the ordinary differential equation

L[N]= N"IN + [(k2 - 2) + 2(k2 - 1)N2 ]N'2/[1 + (1 - k2 )N2 ](1 + N 2 )

= (1 + N2 )[1 + (1 - k2 )N 2]AB[1 + 2N 2 + (1 - k2)N4],

which has the first integral

N' 2 = ((1 + N2 )[1 + (1 - k2 )N 2 ]/2ABk}

x [D/2 + ln{[2(1 - k2 )N 2 + 2(1- k)]/[2(1- k2 )N 2 + 2(1 + k)]}] (72)
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where D is an arbitrary constant. Corresponding results for the SG-equation are obtained by
taking the limit as k approaches zero.

Another equation with an odd-variable period term is

u,, = tn(u) . (73)

Application of the transformation given by equation (71) gives

L[N] = (1 + N 2 )[1 + (1 - k 2 )N 2]AB[1 + (k 2 - 1)N 4 ],

which has the first integral

2(1 - k2 )" 2ABN' 2 = (1 + N 2)[1 + (1 - k2 )N2 ]

x ln{[1 + (1 - k2 )1 12 N 2 ]/[1- (1 - k2 )1/2N 2]} (74)

In the limit as k approaches zero, equations (73), (74) reduce to the corresponding results
given by equations (49) and (52) for the tangent equation.

Finally, an equation with an even-variable periodic function is

uf, = cn(u) . (75)

Application of the transformation given by equation (71) gives

L[N] = [1 - (1 - k2 )N4 ][1 + (2 - k2 )N 2 + (1 - k2 )N4 ]1/2/2AB[(1 + N 2 )2 - k 2 N4 ]N.

Setting

N'2 = (1 + N 2 )2H(N2 ),

where H is a continuously differentiable function, reduces the problem to a first-order
ordinary differential equation for H. The solution is given by

2ABH/[1 + (1- k2)N2] = {-f [x(1 + x){1 + (1- k 2)xl - 112 dx

+ 2 f (1 + x) 1 12 x-1 2[1 + (1 - k2 )x-l1 2 [(1 - k 2)x 2 + 2x + 1 1- 2 dx}=N2

where the notation indicates that x is to be replaced by N 2 after the integrations have been
carried out. Results for the cosine equation, equation (63), are obtained by taking the limit
as k approaches zero. It is possible to extend these results to double-sn, etc., equations, but
the integrations are rather involved.
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